Harnessing yeast subcellular compartments for the production of plant terpenoids

Moran Farhi a, Elena Marhevka a, Tania Mascia a, Evgeniya Marcos a, Yoram Eyal b, Mariana Ovadis a, Hagai Abeliovich c, Alexander Vainstein a,∗

a Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
b Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel
c Department of Biochemistry and Food Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel

1. Introduction

Terpenoids, synthesized by all organisms, are the most wide-spread and structurally diverse class of biological compounds (Ajikumar et al., 2008; Bouvier et al., 2005). Among the numerous biological functions ascribed to these compounds are hormone signaling, electron transport, protein modification, and structural functional integrity of biological membranes. Numerous specialized metabolites, such as antibiotics, phytoalexins, pigments, and aroma compounds are also terpenoids. Moreover, these molecules are widely used in commercial applications, from adhesive materials and pharmaceuticals to coloring agents, fragrances, and flavors (Ajikumar et al., 2008).

Terpenoids are biosynthesized by two distinct biochemical pathways (Maury et al., 2005). Most bacteria utilize the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, whereas archaea and most eukaryotes utilize the mevalonic acid pathway toward farnesyl diphosphate (FDP) accumulation, and evaluated the possibility of harnessing the mitochondria as an alternative to the cytosol for metabolic engineering. Overall, we achieved 8- and 20-fold improvement in the production of valencene and amorphadiene, respectively, in yeast co-engineered with a truncated and deregulated HMG1, mitochondrion-targeted heterologous FDP synthase and a mitochondrion-targeted sesquiterpene synthase, i.e. valencene or amorphadiene synthase. The prospect of harnessing different subcellular compartments opens new and intriguing possibilities for the metabolic engineering of pathways leading to valuable natural compounds.

© 2011 Elsevier Inc. All rights reserved.

The biologically and commercially important terpenoids are a large and diverse class of natural products that are targets of metabolic engineering. However, in the context of metabolic engineering, the otherwise well-documented spatial subcellular arrangement of metabolic enzyme complexes has been largely overlooked. To boost production of plant sesquiterpenes in yeast, we enhanced flux in the mevalonic acid pathway toward farnesyl diphosphate (FDP) accumulation, and evaluated the possibility of harnessing the mitochondria as an alternative to the cytosol for metabolic engineering. Overall, we achieved 8- and 20-fold improvement in the production of valencene and amorphadiene, respectively, in yeast co-engineered with a truncated and deregulated HMG1, mitochondrion-targeted heterologous FDP synthase and a mitochondrion-targeted sesquiterpene synthase, i.e. valencene or amorphadiene synthase. The prospect of harnessing different subcellular compartments opens new and intriguing possibilities for the metabolic engineering of pathways leading to valuable natural compounds.

© 2011 Elsevier Inc. All rights reserved.
The mevalonic acid (MVA) pathway in S. cerevisiae. Genes that were integrated into the pathway (underlined) and those that were deleted (underlined and marked with Δ) are indicated. HMG—truncated 3-hydroxy-3-methylglutaryl-
coenzyme A reductase, FDPS—heterologous farnesyl diphosphate synthase, CsTPS1—valencene synthase, and AaADS—amorpha-4,11-diene synthase; mt denotes mitochondrion-targeting sequence fused to the corresponding gene.

Fig. 1. The mevalonic acid (MVA) pathway in S. cerevisiae. Genes that were integrated into the pathway (underlined) and those that were deleted (underlined and marked with Δ) are indicated. HMG—truncated 3-hydroxy-3-methylglutaryl-
coenzyme A reductase, FDPS—heterologous farnesyl diphosphate synthase, CsTPS1—valencene synthase, and AaADS—amorpha-4,11-diene synthase; mt denotes mitochondrion-targeting sequence fused to the corresponding gene.

for squalene synthase and DPP1 encoding diacylglycerol pyrophosphate phosphatase) have been tested (Herrero et al., 2008; Jackson et al., 2003; Paradise et al., 2008; Ro et al., 2006; Takahashi et al., 2007). For example, early on, Jackson et al. (2003) found that co-expression of ERG20 and the hyperactive upc2-1 allele of UPC2, in a strain engineered with epi-cedrol synthase, elevated sesquiterpene yield by 50%. Paradise et al. (2008) demonstrated that amorphadiene production can be enhanced up to fivefold by fine-tuning ERG9 expression. A further demonstration of the key role of downstreaming squalene synthase for enhanced production of sesquiterpenes in yeast was provided by Takahashi et al. (2007), who employed an erg9 mutant strain with an additional mutation enabling aerobic sterol uptake. Interestingly, combining knockout of dpp1 (a diacyglycerol pyrophosphate phosphatase that can act on farnesyl diphosphate) and HMG1 overexpression in the erg9Δ strain only hampered sesquiterpene production (Takahashi et al., 2007). The common approach in these and other studies was to enhance metabolic flux toward the sesquiterpene precursor farnesyl diphosphate (FDP) or to increase its levels.

FDP stands at a major intersection of metabolic pathways leading to the production of, for example, sterols, dolichols, ubiquinone and prenylated proteins (Fig. 1), and enzymes that utilize FDP reside in different subcellular compartments. For instance Erg9p is localized to the membrane of the endoplasmic reticulum (ER), Bts1p (encoding geranylgeranyl diphosphate synthase) in the endoplasmic reticulum (ER), Bts1p (encoding geranylgeranyl diphosphate synthase) in the endoplasmic reticulum (ER), and Dlp1p (encoding cis-prenyltransferase) in lipid particles (Grabinska and Palamarczyk, 2002; Huh et al., 2003). Here we evaluated the possibility of harnessing intracellular compartments for the production of plant sesquiterpenes. We first generated yeast strains with enhanced flux in the MVA pathway by expressing a mutated, soluble, non-feedback-inhibited HMG1 and a heterologous FDPS and analyzed the effects of blocking FDP metabolism toward hexaprenyl diphosphate and farnesol (FOH) on production of foreign terpenes, i.e. the plant sesquiterpenes valencene (a major citrus aroma constituent) and amorphadiene (an antimarial drug precursor). Targeting of these sesquiterpenes to mitochondria revealed that yeast have a viable pool of FDP there, which can be efficiently redirected toward the production of plant terpenoids. Production levels could be further elevated by co-localizing FDPS and sesquiterpenes synthases to the mitochondria and using yeast with both cytosol- and mitochondrion-targeted foreign terpene synthases. The advantages of integrating various subcellular localizations for efficient metabolic engineering of terpenoids are discussed.

2. Materials and methods

2.1. Materials

Microbial growth medium was purchased from Difco Laboratories (Sparks, MD, USA). Molecular biology reagents, enzymes, and kits were from Fermentas International (Burlington, Ontario, Canada), and Promega (Madison, WI, USA). 5-Fluoroorotic acid (5-FOA) was obtained from Zymo Research (Orange, CA, USA). All other chemicals were purchased from Sigma-Aldrich (Rehovot, Israel).

2.2. Yeast and bacterial host strains

Escherichia coli XL1-Blue (Stratagene, La Jolla, CA, USA) was used for all routine cloning and plasmid propagation. Bacteria were grown in Luria–Bertani broth supplemented with 100 mg/ml ampicillin. Saccharomyces cerevisiae strains W303-1A (MATα, ade2-1, trp1-1, leu2-3, 112 his3-11, 15 ura3-1) and BDXe (a uracil auxotroph derivative of strain BDX, Lallemend, Redxale, Ontario, Canada) were used as the parent strains.

2.3. Construction of yeast expression vectors

To enable genetically stable and controlled expression of several genes in yeast, plasmid pOE was constructed. First the promoter and 5′-UTRs of the copper-inducible promoter CUP1 (Pcup1) were amplified by polymerase chain reaction (PCR) from W303-1A yeast genomic DNA. Next the 3′-UTR and terminator of CYC1 (T′CYC) were PCR-amplified from yeast genomic DNA using primers that introduced multiple cloning sites (Labbé and Thieie, 1999). After digestion with NotI and XhoI, the two fragments were ligated with SacI/XbaI-digested pU-UB plasmid (Lee and Da Silva, 1997) to generate pOE. This vector allows strong copper-inducible expression, genomic integration into chromosomal δ sequences and recycling of the URA3 selection marker by counter-selection on 5-FOA-supplemented medium. To generate a mutated form of yeast 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-R), the catalytic domain of HMG1 (HMG; Polakowski et al., 1998) was PCR-amplified from yeast genomic DNA and cloned into pOE, and the resulting plasmid was termed pOE-THMG.

Arabidopsis thaliana farnesyl diphosphate synthase (AtFDPS, accession no. X75789) was PCR-amplified from cDNA using gene-specific primers designed to target the short cytosolic form (FPS1S; Curnillera et al., 1996) and which added 5′ NotI and 3′ Sphl restriction sites. The amplified fragment was cloned into pOE at the NotI and Sphl sites, generating vector pOE-AtFDPS. Homo sapiens FDPS (HsFDPS, accession no. BC010004) was cloned
similarly using clone ID HsCD00045488, obtained from PlasmidID (http://plasmid.med.harvard.edu/PLASMID.ID).

The complete coding sequence of *Citrus sinensis* valencene synthase CsTPS1 (accession no. AF441124) was PCR-amplified from pRSETa-CsTPS1 (Sharon-Asa et al., 2003) using primers that added 5' NotI and 3' SphI restriction sites. The *Artemisia annua* terpene synthase, amorphoa-4,11-diene synthase (ADS, accession no. Q9AR04; Mercke et al., 2000), was cloned using a *Annuu* cDNA and gene-specific primers that added 5' NotI and 3' SphI restriction sites. Amplified CsTPS1 and ADS genes were cloned individually into pOE at the NotI/SphI sites generating pOE-CsTPS1 and pOE-ADS. To generate plasmid pRS303N-CsTPS1, harboring CsTPS1 under P_CUP1 in the antibiotic-selectable integration vector pRS303N (Taxis and Knop, 2006), the entire expression cassette (comprising P_CUP1-CsTPS1-T_CYC1) was mobilized from pOE-CsTPS1 using BssHII restriction and inserted at the Ascl restriction site of pRS303N.

To target enzymes of interest to the yeast mitochondria, the native yeast mitochondrial signal peptide from *Saccharomyces cerevisiae* strains generated in this study.

2.4. Yeast transformation, strain construction, and cultivation

Yeasts were grown in YPD medium (1% yeast extract, 2% peptone, 2% glucose, w/v) or synthetic minimal medium (SD; 0.67% yeast nitrogen base, 2% glucose, w/v, and auxotrophic amino acids and vitamins as required).

All *S. cerevisiae* strains used in this study are listed in Table 1. Yeast were transformed by the lithium-acetate method; when pOE plasmids were used, they were linearized at the *XhoI* site in the δ-sequence prior to transformation. Colonies growing on uracil drop-out media were verified as harboring the relevant gene by colony PCR. To allow stacking of genes of interest into the yeast genome, the *URA3* selection gene of an integrated pOAD vector was amplified from BY4741 yeast strain and cloned into pOE, yielding pOE-mtCsTPS1, pOE-mtADS, and pOE-mtFDPS, respectively.

2.5. GC–MS analysis of terpenoids

Terpenoid identification and quantification were performed as described by us previously (Farhi et al., 2010). The system was composed of a TRACE GC 2000 gas chromatograph and a TRACE DSQ quadrupole mass spectrometer (ThermoFinnigan, Hemel, UK). Gas chromatography was run in a 30 m Rtx-5Sil MS column with 0.25-μm film thickness (Restek, Bad Homburg, Germany). The injection temperature was set at 250 °C, the interface at

Table 1

<table>
<thead>
<tr>
<th>Strain no.</th>
<th>Host strain</th>
<th>Integrated constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>M144</td>
<td>W303-1A</td>
<td>δ::P_CUP1-HMG, δ::P_CUP1-AtFDPS, δ::P_CUP1-CsTPS1</td>
</tr>
<tr>
<td>M208</td>
<td>W303-1A</td>
<td>δ::P_CUP1-CsTPS1</td>
</tr>
<tr>
<td>M212</td>
<td>BDXe</td>
<td>δ::P_CUP1-CsTPS1</td>
</tr>
<tr>
<td>M213</td>
<td>BDXe</td>
<td>δ::P_CUP1-mtMTS</td>
</tr>
<tr>
<td>M241</td>
<td>BDXe</td>
<td>δ::P_CUP1-mtCsTPS1</td>
</tr>
<tr>
<td>M243</td>
<td>BDXe</td>
<td>δ::P_CUP1-HMG, δ::P_CUP1-mtCsTPS1</td>
</tr>
<tr>
<td>M246</td>
<td>BDXe</td>
<td>δ::P_CUP1-HMG, δ::P_CUP1-mtMTS, δ::P_CUP1-mtADS</td>
</tr>
<tr>
<td>M253</td>
<td>BDXe</td>
<td>δ::P_CUP1-ADS</td>
</tr>
<tr>
<td>M277</td>
<td>W303-1A</td>
<td>Δ::tHMG, Δ::δ::P_CUP1-GSTPS1</td>
</tr>
<tr>
<td>M278</td>
<td>W303-1A</td>
<td>Δ::P_CUP1-GSTPS1</td>
</tr>
<tr>
<td>M280</td>
<td>W303-1A</td>
<td>Δ::P_CUP1-HMG, Δ::P_CUP1-CsTPS1</td>
</tr>
<tr>
<td>M281</td>
<td>W303-1A</td>
<td>Δ::P_CUP1-HMG, Δ::P_CUP1-GSTPS1</td>
</tr>
<tr>
<td>M287</td>
<td>W303-1A</td>
<td>Δ::P_CUP1-HMG, Δ::P_CUP1-mtMTS, δ::P_CUP1-mtADS</td>
</tr>
<tr>
<td>M288</td>
<td>W303-1A</td>
<td>Δ::P_CUP1-HMG, Δ::P_CUP1-AtFDPS, δ::P_CUP1-GSTPS1</td>
</tr>
<tr>
<td>M290</td>
<td>W303-1A</td>
<td>Δ::P_CUP1-AtFDPS, δ::P_CUP1-GSTPS1</td>
</tr>
<tr>
<td>M291</td>
<td>W303-1A</td>
<td>Δ::P_CUP1-HMG, Δ::P_CUP1-GSTPS1</td>
</tr>
<tr>
<td>M1058</td>
<td>BDXe</td>
<td>Δ::P_CUP1-HMG, Δ::P_CUP1-AtFDPS, δ::P_CUP1-mtMTS, δ::P_CUP1-mtADS</td>
</tr>
<tr>
<td>M1059</td>
<td>BDXe</td>
<td>Δ::P_CUP1-HMG, Δ::P_CUP1-AtFDPS, δ::P_CUP1-mtMTS, δ::P_CUP1-ADS</td>
</tr>
<tr>
<td>M1076</td>
<td>BDXe</td>
<td>Δ::P_CUP1-AtFDPS, δ::P_CUP1-mtMTS, δ::P_CUP1-mt ADS</td>
</tr>
<tr>
<td>M1077</td>
<td>BDXe</td>
<td>Δ::P_CUP1-HMG, δ::P_CUP1-AtFDPS, δ::P_CUP1-mtMTS</td>
</tr>
<tr>
<td>M1216</td>
<td>BDXe</td>
<td>Δ::P_CUP1-HMG, δ::P_CUP1-AtFDPS, δ::P_CUP1-mtMTS, δ::P_CUP1-GSTPS1</td>
</tr>
<tr>
<td>M1297</td>
<td>BDXe</td>
<td>Δ::P_CUP1-HMG, δ::P_CUP1-AtFDPS, δ::P_CUP1-mtMTS, δ::P_CUP1-GSTPS1</td>
</tr>
</tbody>
</table>

a δ: denotes integration into a δ element insertion site using pOE-based vector.
250 °C, and the ion source adjusted to 230 °C. Helium was used as the carrier gas at a flow rate of 1 ml/min. The analysis (1 μl sample) was performed under the following temperature program: 1 min isothermal heating at 60 °C, followed by a 10 °C/min oven temperature ramp to 130 °C, then a 3 °C/min oven temperature ramp to 170 °C, followed by a 50 °C/min oven temperature ramp to 270 °C and final heating for 2 min at 270 °C. A scan range of 40–450 m/z was used. Metabolites were identified by comparing retention times and mass spectra with those in the NIST library and with authentic standards. Terpenoids were quantified using a valencene standard curve and a caryophyllene internal standard.

3. Results

3.1. Production of the Citrus sesquiterpene valencene in yeast is affected by deletion of BTS1 but not of DPP1 or LPP1

FDP is at a metabolic branching point in the terpenoid pathway in yeast (Fig. 1) and several enzymes, located in different cellular compartments, can compete for it (Grabinskaa and Palamarczyk, 2002). To test whether production of foreign sesquiterpenes can be enhanced through the elimination of putative competing reactions, we first generated yeast line M208 expressing C. sinensis CsTPS1, coding for valencene synthase, under the control of CUP1 (Table 1). To trap terpenes generated by the yeast culture, the medium was overlaid with dodecane. GC–MS analysis of the organic layer confirmed that M208 was capable of synthesizing valencene following CUP1 induction. Only the single product and no secondary modification of the hydrocarbon could be detected in the analysis. In culture in which expression from the CUP1 promoter was inhibited by addition of the copper chelator BCS, only a negligible amount of valencene was detected (Fig. 2). Yeast’s production of valencene was evaluated for 6 days in YPD medium. Valencene continued to accumulate throughout the culture period, reaching a maximal level of 38 μg/l on the sixth day, while cultures reached the stationary stage of growth within 48 h (Fig. 2b and c). The accumulation pattern of the endogenous sesquiterpene FOH was essentially the same as that of valencene (Supplementary information, Fig. S1a). Prolonged culture time without fresh medium supplementation did not yield any significant increase in valencene production (data not shown), and a 6-day growth period was therefore chosen for further experiments.

Geranylgeranyl diphosphate synthase, encoded in S. cerevisiae by BTS1/YPL069C, utilizes FDP as part of the ubiquinone biosynthesis pathway and the protein geranylgeranylation process; its mutant does not confer a significant growth phenotype (Fig. 1; Jiang et al., 1995). To evaluate whether this reaction competes with valencene production, we generated yeast with bts1Δ. Valencene production in a bts1Δ background, measured using a dodecane biphasic culture, decreased by half as compared to that in the WT background (Fig. 3), while cell density was not affected by the knockout.

To test whether a reduction in Dpp1p and Lpp1p phosphatase activity on FDP might enhance valencene production, CsTPS1 was expressed in a yeast strain lacking DPP1 and LPP1 in its genome. Not only did knockout of the phosphatase genes not enhance valencene production, it actually led to a marginal reduction of ca. 10% compared to that in the WT background (Fig. 3). Specific production

![Fig. 2. Valencene production in yeast engineered with CsTPS1. Yeast transformed with CsTPS1 or the parental strain W303-1A were grown on YPD medium overlaid with dodecane. Cells were supplemented with 100 μM CuSO4 for induction of the CUP1 promoter (+Cu) or with BCS to inhibit induction (−Cu). Aliquots of dodecane and medium were collected and analyzed by GC–MS to determine levels of valencene and optical cell density, respectively. (a) Total ion chromatographs of dodecane extract from cell cultures following induction or inhibition of CUP1 promoter; WT—parental strain W303-1A supplemented with valencene authentic standard. (b) Valencene was measured at the indicated time points using GC–MS; data represent means of triplicate cultures ± standard error. (c) Changes in cell density of yeast culture expressing CsTPS1 over the 144 h growth period.](Author's personal copy)
Engineered CsTPS1 yeast strains were transformed with CsTPS1 and grown on YPD medium overlaid with dodecane. The dodecane layer was analyzed by GC–MS. Data represent means of at least triplicate cultures ± standard error.

To evaluate the effect of elevating metabolic flux in the MVA pathway on valencene production, the parental strain with truncated Hmg1p (tHMG) from S. cerevisiae, which gives a soluble form of the enzyme that is relieved of inhibition by the pathway’s products (Polakowski et al., 1998), was transformed with CsTPS1 and tHMG and were able to produce approximately 1.6-fold more valencene than the parental strain with CsTPS1 alone (Fig. 4). Similarly, production of FDP-derived FOH was also elevated in the tHMG-expressing strain (Supplementary information, Fig. S1b). In contrast, addition of tHMG to a strain engineered with CsTPS1 and lacking DPP1 and LPP1 did not improve valencene production, maintaining a titer of ca. 40 μg/l. The bts1Δ background also led to a reduction in valencene production levels. Despite expression of tHMG, a ca. fourfold decrease was observed in this mutant background as compared to the WT background (Fig. 4), keeping production levels in the latter similar to those observed without tHMG in the mutant strain (Fig. 3).

To enhance substrate availability for foreign terpene production via an increase in FDPS levels, we cloned Arabidopsis thaliana short cytosol-localized FDPS (AtFDPS) and expressed it in yeast (Cunillera et al., 1996). Expression of AtFDPS, similar to tHMG, had a positive effect, i.e. a ca. 30% increase, on valencene production. Replacing arabidopsis FDPS with a human-derived gene (HsFDPS) had a similar effect on valencene levels.

Co-expression of the genes enhancing flux in the MVA pathway, tHMG, and FDPS, had a synergistic effect, improving production of valencene fourfold compared to the WT background. Use of AtFDPS or HsFDPS had a comparable effect: 150 μg/l of valencene was measured after 144 h growth on YPD medium (Fig. 5). To further substantiate the effect of tHMG and heterologous FDPS on valencene production, the non-laboratory yeast line BDXe was engineered by genomic integration of CsTPS1, tHMG, and AtFDPS,
driven by CUP1 promoters. Strain BDXe expressing only CsTPS1 produced 4.7 times higher valencene levels than CsTPS1-expressing W303-1A. Co-expression of HMG and FDPS further doubled valencene production in the CsTPS1-expressing BDXe, bringing it to 370 μg/l (Fig. 5).

3.3. Shunting engineered terpenoid metabolism through yeast mitochondria results in a dramatic increase in plant sesquiterpene production

Several mitochondrial enzymes, e.g. Cox10p, Coq1p, and Bts1p (Fig. 1; Grabinskaa and Palamarczyk, 2002), utilize FDP. To examine whether the mitochondrial FDP pool can be harnessed to synthesize foreign terpenes, we fused the bona fide mitochondrial targeting signal peptide from the yeast COX4 gene (Hurt et al., 1985) to CsTPS1, generating mtCsTPS1. Expression of mtCsTPS1 in BDXe yeast led to a threefold rise in valencene titers compared to that generated via the use of cytosolic CsTPS1 (Fig. 6a). Combining HMG expression with mtCSPTSI enhanced valencene production by an additional 50%. Expression of AtFDPS in this background had no beneficial effect on valencene production levels. In contrast, when mitochondrion-targeted FDPS (mtFDPS) was used instead of AtFDPS, valencene production levels were further increased by 40%. Next, we tested whether both the mitochondria and the cytosol can be exploited simultaneously for valencene production. Addition of a cytosolic copy of valencene synthase, CsTPS1, to HMG/mtFDPS/mtCSPTSI-expressing strain BDXe further increased valencene production, yielding an overall 1.5 mg/l, a ca. eightfold increase over BDXe expressing only cytosolic CsTPS1 (Fig. 6a). To substantiate the efficacy of using the mitochondrial compartment for production of plant sesquiterpenes, we cloned amorph-4,11-diene synthase (ADS) from Artemisia annua and fused it to the yeast mitochondrion-targeting signal, generating mtADS. Expression of mtADS, as compared to its cytosolic counterpart, strongly enhanced amorphadiene production. Co-expression of HMG and mtFDPS with mtADS further elevated amorphadiene production, yielding ca. 20 mg/l of this sesquiterpene (Fig. 6b).

4. Discussion

Enhancing terpenoid production by applying various metabolic-engineering strategies in the native host organism, or in a heterologous one, has enjoyed considerable interest in the last few years (Ajikumar et al., 2008). The use of microbial platforms for terpene production has significant advantages, such as the availability of data on metabolic networks, the ease of reconstructing and redesigning complete pathways, and the ability to scale up the fermentation process (Pfleger et al., 2007; Redding-Johanson et al., 2011). Indeed there are several examples of successful high-titer production of terpenoids such as amorphadiene, linalool, carotenoids, and taxadiene, in microbial systems such as Escherichia coli, Lactococcus lactis, and S. cerevisiae (Anthony et al., 2009; Dejong et al., 2006; Hernandez et al., 2007; Martin et al., 2003; Oswald et al., 2007; Verwaal et al., 2007). As a eukaryote, yeast has the advantage of being able to support post-translational modifications and host membrane-anchored and organelle-specific enzymes (Shiba et al., 2007; Szczepanek et al., 2003). Some of the best examples of the biosynthesis of complex terpenoids in yeast include reconstruction of the mammalian hydrocortisone biosynthetic pathway, production of artemisinic acid (a precursor of the antimalarial drug artemisinin), and commercial bioproduction of β-carotene in the oleaginous yeast Yarrowia lipolytica (Ro et al., 2006, 2008; Szczepanek et al., 2003; http://www.microbion.com, 2010).

Most studies aimed at generating yeast-cell factories for the production of terpenoids have employed overexpression of key flux-regulating enzymes in the MVA pathway. Overproduction of the catalytic domain of HMG-R (HMG) in S. cerevisiae was shown to enhance production of both native terpenoids (Donald et al., 1997; Tokuhira et al., 2009) and plant-derived terpenoids when combined with expression of a heterologous terpene synthase (Ro et al., 2006). Overexpression of the native yeast FDPS ERG20 resulted in a 28% increase in ergosterol but no significant increase in the production of plant-derived diterpenes or sesquiterpenes in yeast (Chambon et al., 1991; Dejong et al., 2006; Ro et al., 2006). We found that the use of a heterologous arabidopsis or human FDPS allowed enhanced production of valencene in S. cerevisiae (Fig. 5). It should be noted that valencene production levels were low compared to the levels of amorphadiene and to those reported for other plant sesquiterpenes produced in yeast, e.g. cubebol, and 5-epi-aristolochene (Asadollahi et al., 2010; Takahashi et al., 2007). Indeed, the activity of valencene synthase is low relative to that of other terpene synthases. Moreover, divergence in the coding sequences of various copies of genes encoding the enzyme in the same and different varieties (e.g., GenBank accession nos. AAM00426, AAQ04608, AC036239, ACX70155 and CQ81350) might affect the productivity of plant
sesquiterpenes in yeast (Takahashi et al., 2007; Yoshikuni et al., 2006). Here, enhancing flux in the MVA pathway through expression of thmg increased valencene production levels, similar to the increase following FDPS expression, and combining over-expression of thmg and FDPS had an additive effect. This was further validated using a different yeast strain, in which basal CStPS1-driven valencene production was significantly higher. The differential ability of various yeast strains to generate foreign terpenoids has been described previously (Takahashi et al., 2007); in the case of BDXe as compared to W303-1A, the higher efficiency of the former might be due to its being a diploid, and not a laboratory strain that accumulated mutations, e.g. hap1, affecting MVA and terpenoid pathways (Tamura et al., 2004). In yeast, FDPS is under complex regulation; for instance, tRNA levels appear to regulate Erg20p levels (Kwapisz et al., 2002). It is therefore plausible that the use of a heterologous FDPS circumvents this control mechanism. Indeed, Wu et al. (2006) demonstrated that expression of FDPS derived from chicken in tobacco plants yields highly increased production levels of non-native sesquiterpenes such as patchouliol and amorpha-4,11-diene.

Another possible strategy for increasing the production of a selected terpene is limiting the use of the FDP pool for general cell metabolism. Several studies have demonstrated that limiting the FDP used for sterol biosynthesis by downregulating ERG9 expression has a significant positive effect on sesquiterpene biosynthesis (Asadollahi et al., 2010; Paradise et al., 2008). We analyzed whether sesquiterpene biosynthesis can be enhanced by limiting the use of FDP for biosynthesis of ubiquinone and protein prenylation by deleting geranylgeranyl diphosphate synthase (bts1Δ), or by limiting FDP phosphatase activity by deleting endogenous phosphatases (lpp1Δ and dpp1Δ). In neither instance was sesquiterpene production improved, even when combined with flux enhancement in the terpenoid pathway generated by expression of thmg (Fig. 4). It should be noted that the lack of a positive effect of BTS1 deletion was not due to the intracellular location of Bts1p in the mitochondria, since valencene levels were not enhanced in this mutant background even when CStPS1 was directed to the mitochondria (not shown). Dpp1p and Lpp1p have been shown to contribute to FDP phosphatase activity in yeast, and a cell-free extract of the double mutant was deficient in Mg^2+-independent FDP dephosphorylation activity (Faulkner et al., 1999). Yet, similar to our results, a yeast strain in which a single phosphatase (DPP1) was knocked out did not exhibit improved sesquiterpene production (Takahashi et al., 2007). Since Dpp1p and Lpp1p are localized to the vacuole and cellular membrane, respectively, they may not be directly involved in FDP dephosphorylation or in FOH or nerolidol production in vivo. Indeed, overexpression of DPP1 did not lead to increased accumulation of either farnesol or nerolidol. The high levels of FOH observed by us and others in yeast can arise from the enzymatic or spontaneous degradation of FDP (Tokuhiro et al., 2009). On the other hand, it can be suggested that lpp1Δ/dpp1Δ positively affects foreign sesquiterpene production only above a certain threshold level of flux toward FDP.

Enzymes that use IPP, DMAPP, and FDP isoprene units in eukaryotes are compartmentalized within the cell (Fig. 1). In S. cerevisiae, the MVA pathway provides all terpenoid-backbone precursors for molecules destined to both cytoplasmic and intracellular compartments. Given that ubiquinone, heme A, and geranylgeranyl diphosphate are biosynthesized in the mitochondria, we reasoned that mitochondrial FDP might be harnessed for the production of selected terpenoids. We fused the yeast mitochondrial targeting sequence to two plant sesquiterpene synthases, valencene and amorpha-4,11-diene synthase, and expressed them in yeast. In both cases, sesquiterpene biosynthesis was greatly improved relative to its production by the corresponding cytosolic forms of the terpene synthases. We also found that sesquiterpene production via mitochondrial targeting of the relevant terpene synthase can be further increased by enhancing metabolic flux in the MVA pathway via thmg expression. The enhanced levels of sesquiterpenes produced following mitochondrial targeting of terpene synthases, as compared to cytosolic terpene synthases, suggest that the FDP pool is higher in the yeast mitochondria, FDP is more accessible for sesquiterpene biosynthesis, or the terpene synthases are more active in the yeast mitochondria. Lee and Chappell (2008) and Aharoni et al. (2004) isolated terpene synthases from magnolia and strawberry, respectively, with a dual chloroplast–mitochondrion-targeting signal peptide. Furthermore, there is one example from the plant kingdom in which mitochondrial targeting of a cytosolic strawberry sesquiterpene synthase, nerolidol synthase, led to elevated nerolidol production, in A. thaliana (Kappers et al., 2005). More recently, mitochondrial targeting sequences have been used by van Herpen et al. (2010) to produce artemisinin precursors in tobacco. Overall, it can be suggested that in yeast as well as in plants, the mitochondria possess strong potential as a factory for sesquiterpene production.

Mitochondrial targeting of FDPSs for the production of FDP in this organelle appears to be common to many eukaryotes, such as humans, plants, and insects (Martin et al., 2007). Since isopentenyl diphosphate isomerase 2 (ID2) is also localized to the mitochondria in plants, pools of IPP and/or DMAPP are probably also present in those organelles (Phillips et al., 2008). In yeast, while there is no evidence of mitochondrial localization of FDPS or IDI, enzymes Bts1p and Mod5p, which utilize IPP and DMAPP, respectively, reside in the mitochondria (Dihanich et al., 1987; Huh et al., 2003). To test whether mitochondria have a significant pool of DMAPP and IPP and whether the amount of FDP available for sesquiterpene production can be boosted, we targeted FDPS to this subcellular compartment. Expression of mtCStPS1 or mtAds together with mitochondrion-targeted FDPS, as compared to its cytosolic form, in cells engineered with thmg, led to increased levels of the respective sesquiterpenes. Expression of a cytosolic form of CStPS1 in addition to mtCStPS1 further elevated valencene production levels by approximately 25%, an amount (300 µg/l) that was similar to that produced by the strain engineered solely with thmg and CStPS1. The possibility of jointly harnessing different intracellular compartments, e.g. mitochondria and cytosol, for the production of terpenes of interest opens new and intriguing possibilities for the metabolic engineering of pathways leading to valuable natural compounds.

Acknowledgments

We thank Mr. I. Kaye for his support and assistance. The authors would like to thank Dr. N.A. Da Silva, University of California, Irvine, for providing p6-UB plasmid. This work was funded by Israel Science Foundation grant nos. 269/09 and 432/10 and BARD grant no. US-4322-10. A.V. is an incumbent of the Wolfson Chair in Floriculture.

Appendix A. Supplementary material

Supplementary materials associated with this article can be found in the online version at doi:10.1016/j.ymben.2011.05.001.

References